Tuesday, December 15, 2015

Announcing 2015 Capita Foundation Auditory Research (CFAR) grant award recipients

Amanda Lauer, Ph.D.

Johns Hopkins University, Dept. of Otolaryngology


  




Project Title: “Optimizing hearing with top-down brain control of the ear.”  





Project Description

The overall goal of my research is to understand how auditory input from the ear affects the brain, and how the brain in turn affects the ear through efferent feedback loops. I am particularly interested in understanding the hearing disorders that develop when input to and from the brain is altered. We propose to study top-down efferent effects on hearing to understand how the brain controls the ear using optogenetic, behavioral, and immunohistochemical techniques in rodent models. Understanding how these pathways work may open up new treatment avenues for hearing disorders and will help us understand how hearing is optimized by top-down brain control of cochlear activity.


Medial (MOC) and lateral olivocochlear (LOC) neurons project from the brain to the ear and control information sent back to the brain. Adapted from Lauer et al. (2012). Neurobiology of Aging.


Sanjee Abeytunge

The Rockefeller University

Project Title:  "A Novel Micro-probe for Direct Stimulation of Cochlear Hair Cells




The ear is the fastest and most sensitive sensory organ in the human body. It can resolve data a thousand times faster than the eye and can detect vibrations in the environment at the atomic-scale. The dynamic range of human hearing embraces up to 120 dB of sound-pressure level (SPL). This dynamic range allows humans to hear a millionfold range of amplitudes. The frequency response of a human ear extends to 20 kHz while other mammals, such as whales and bats, can hear up to hundreds of kilohertz. However, the current stimulation probes of hair cells in the cochlea, the sense organ of the ear, to study the mechanics of the inner ear is limited to less than 1 kHz. This limitation leaves most of the mammalian auditory frequencies unstudied. This experimental limitation is due to the physical dimensions of the probes and their configurations used during experiments. My work is design and construction of a micrometer scale novel probe that will overcome the current frequency limitation.