Friday, January 7, 2022

Announcing 2021 Capita Foundation Auditory Research (CFAR) grant award recipients

Brian M. McDermott Jr., Ph.D.


Case Western Reserve University
Project Title: "Understanding and implementing the self-healing capacity of the auditory hair bundle for the treatment of hearing-impaired children in the US"

Hair cells are the cellular receptors for sound that reside in the inner ear. These cells are the epitome of cellular specialization to accomplish a specific biological task: mechanotransduction—the conversion of mechanical stimuli into an electrical response. These cells contain specific organelles on which hearing is dependent, including the stereocilia. The mechanosensitive hair bundle consists of a precise arrangement of actin-based stereocilia, which extend from the hair cell's apical surface. A systematic increase in stereociliary length results in a bevel-shaped hair bundle. Each cylindrical stereocilium is stiff, but its uniform girth tapers towards the base to allow for flexion. When sound enters the ear, it causes these tiny stereocilia to vibrate at high rates. Damage to the stereocilia is often the cause of hearing impairment. The damage can be caused by either loud noise or genetic mutations. In this grant, we will explore the self-healing capacity of the hair bundle and examine how it may be used for therapeutic approaches. 


Vibhuti Agrahari, Ph.D.


University of Oklahoma

Project Title:  "ROS-responsive NanoSensoGel for Prevention of Cisplatin-Induced Ototoxicity and Hearing Loss" 

Cisplatin-Induced Ototoxicity (CIO) and associated hearing loss is irreversible and there are no treatments currently available to reverse CIO, therefore, prophylactic care is critical. However, to reduce CIO, there is a need to identify the appropriate route of drug administration, and selection of an optimal drug delivery strategy with enhanced therapeutic efficacy, and the product translation to clinical application. This project will investigate the development of novel targeted nanoformulations to provide a prophylactic cure of CIO not only in adults but also in pediatric patients. The bio-responsive nanoformulations (Nano-SensoGel) will be designed to provide a long-term therapeutic effect through enhanced bio-retention and inner ear targeted attributes of the delivery system. The outcomes of this study will be critical in addressing the clinical needs towards the development of inner ear targeted technologies for the prevention of CIO-induced hearing loss.


No comments:

Post a Comment